CIRRUS-HCM: A Multiple-Dose Phase 2 Study of Safety, Tolerability, and Effects

on Hemodynamics and Functional Capacity of the Novel Cardiac Sarcomere Modulator EDG-7500 in Hypertrophic Cardiomyopathy

Anjali T Owens¹, Theodore P Abraham², Ronald Wharton³, Ankit Bhatia⁴, Mariko W Harper⁵, Christopher Dufton⁶, Daniel D Gretler⁶, Jeffrey A Silverman⁶, Marilyn M Mok⁶, Molly Madden⁶, James MacDougall⁶, Natalie Hawryluk⁶, and Marc J Semigran⁶

¹University of Pennsylvania, Philadelphia PA; ²University of California, San Francisco CA; ³Northwell Health, New Hyde Park NY; ⁴The Christ Hospital Health Network, Cincinnati OH; ⁵Virginia Mason Franciscan Health, Seattle WA; ⁶Edgewise Therapeutics, Boulder CO

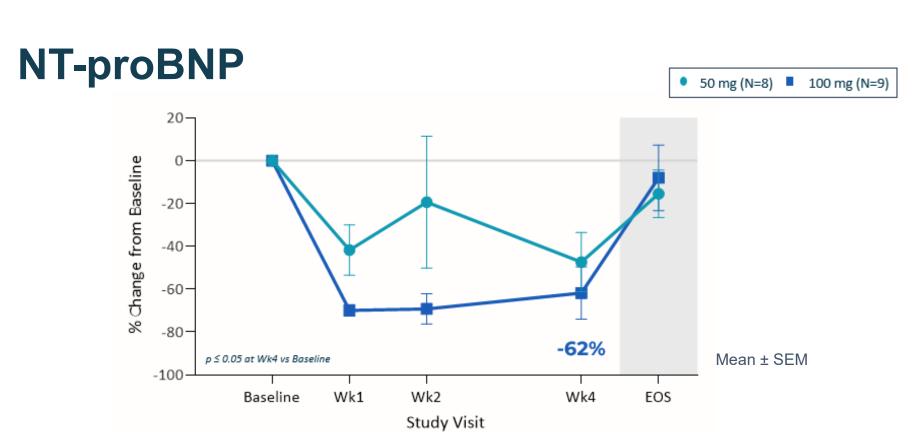
Background

- EDG-7500 is a novel cardiac sarcomere modulator designed to slow the rate of actomyosin engagement and speed disengagement without inactivating the myosin motor head.
- In preclinical studies and the Phase 2 single-dose oHCM study, EDG-7500 demonstrated significant reductions in LVOT-G and NT-proBNP, along with improvements in diastolic function.
- Cardiac myosin inhibitors, both approved and in development, might cause systolic dysfunction and require careful LVEF monitoring through frequent echocardiographic evaluation.
- No meaningful reductions in LVEF have been observed across the EDG-7500 development program so far, which potentially could eliminate the need for safety echocardiograms.

Baseline Characteristics

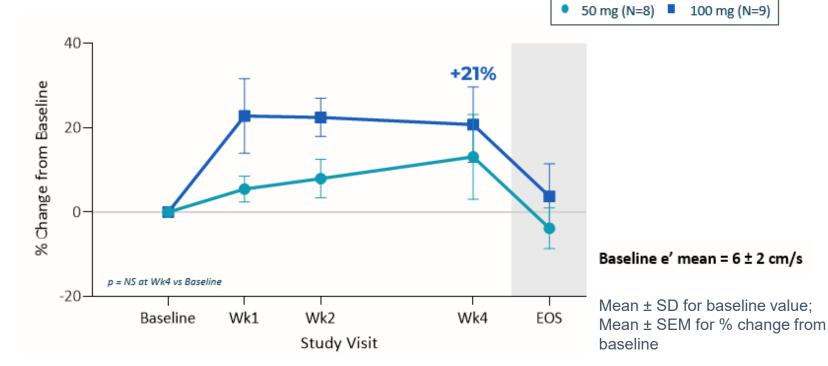
	oHCM (N=17)	nHCM (N=12)
Age (yrs), mean (SD)	61 (13)	54 (19)
Female, n (%)	12 (71%)	7 (58%)
BMI (kg/m²), mean (SD)	28 (4)	27 (4)
Pathogenic sarcomere variant, n (%)	4 (24%)	4 (33%)
History of paroxysmal AF / flutter, n (%)	1 (6%)	2 (17%)
ICD, n (%)	2 (12%)	6 (50%)
Prior SRT, n (%)	1 (6%)	0%
Hypertension, n (%)	11 (65%)	2 (17%)
Diabetes, n (%)	1 (6%)	2 (17%)
NYHA Class I, n (%)	1 (6%)	0%
NYHA Class II, n (%)	10 (59%)	6 (50%)
NYHA Class III, n (%)	6 (35%)	6 (50%)
LVEF (%), mean (SD)	65 (4)	61 (6)
LVOT-G (resting; mmHg), mean (SD)	59 (30)	9 (6)
LVOT-G (Valsalva; mmHg), mean (SD)	93 (32)	14 (10)
e' mean (cm/s), mean (SD)	6 (2)	7 (2)
Maximal LV wall thickness (mm), mean (SD)	18 (2)	18 (3)
LAVI (mI/m²), mean (SD)	37 (13)	31 (12)
KCCQ-OSS, mean (SD)	63 (16)	57 (22)
KCCQ-CSS, mean (SD)	69 (15)	63 (23)
NT-proBNP (geometric mean /median (IQR); pg/ml)	724 / 710 (381, 1074)	782 / 715 (546, 1231)

Obstructive HCM

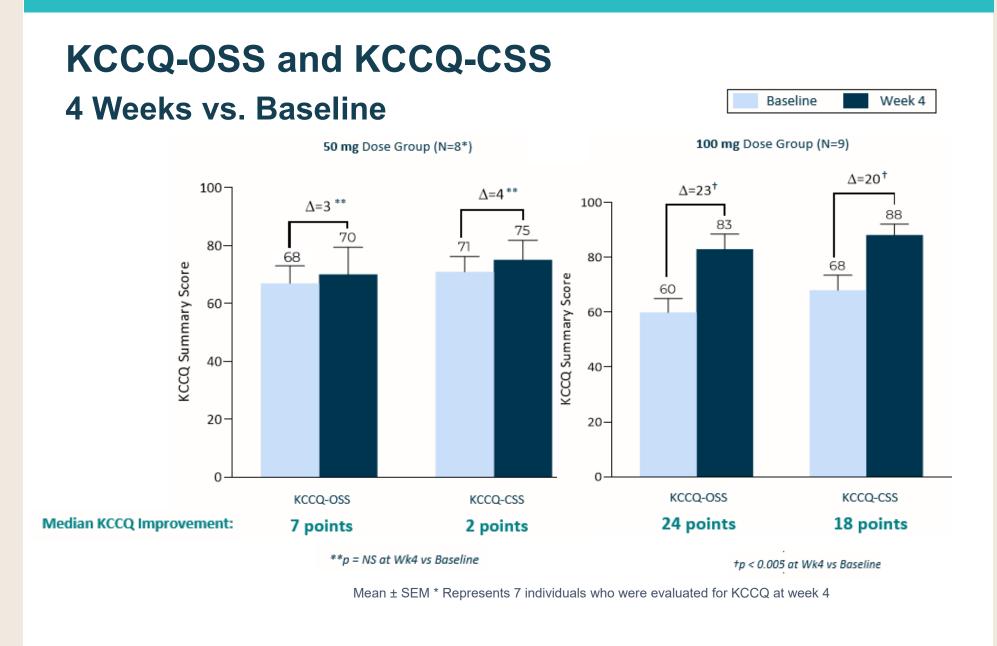

Mean ± SEM

Absolute Value Absolute Value So mg (N=8) So mg (N=9) So mg (N=8) So mg (N=9) So mg (N=8) So mg (N=9) So mg (N=8) So mg (N=8) So mg (N=9) So mg (N=9) So mg (N=8) So mg (N=9) So mg (N=8) So mg (N=8) So mg (N=8) So mg (N=8) So mg (N=9) So mg (N=8) So mg (N=8) So mg (N=9) So mg (N=9) So mg (N=8) So mg (N=9) So mg (N=8) So mg (N=8) So mg (N=9) So mg (N=9) So mg (N=8) So mg (N=9) So mg (N=9)

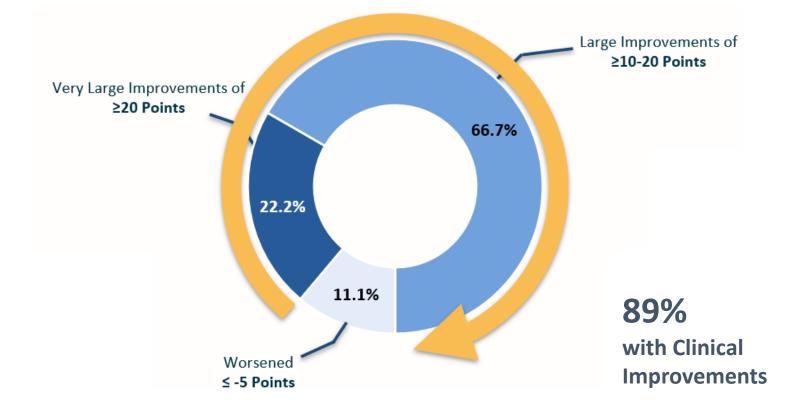
%** Reaching Resting LVOT-G <30mmHg (wk 4): 43% (50mg), 89% (100mg)


%** Reaching Valsalva LVOT-G <50mmHg (wk 4): 57% (50mg), 89% (100mg)

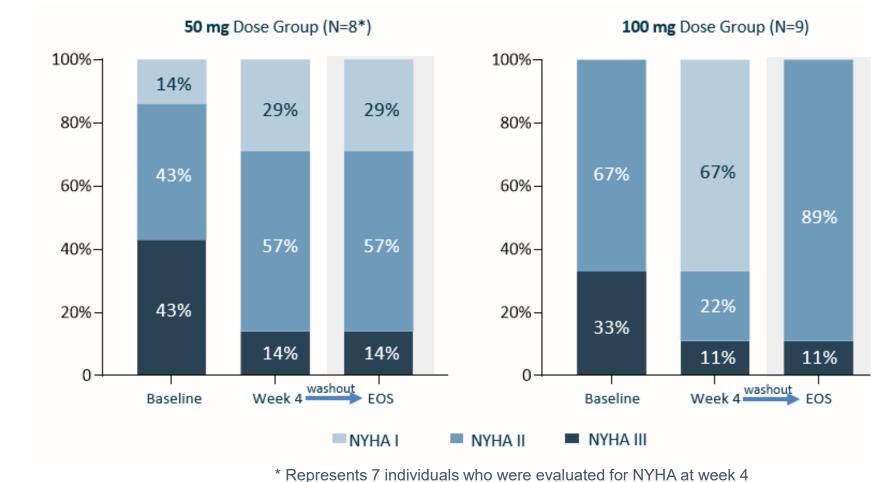
* 5 participants had either resting gradients <30 mmHg or Valsalva gradients <50 mmHg on Day 1; ** % reaching LVOT criteria based on N=7 and N=9 participants with Week 4 data at 50 mg and 100 mg respectively; Complete LVOT-G response defined as resting and Valsalva gradients <30 mmHg and <50 mmHg, respectively.


- 5/9 (56%) at 100 mg achieved NT-proBNP <150 pg/mL
 Improvements in NT-proBNP have shown a strong
- correlation to improvements in pVO₂¹

Early Diastolic Mitral Annular Velocity (e')


 Rapid dose-responsive improvements in mean e' observed as early as 1 week after initiation of treatment with EDG-7500

Obstructive HCM



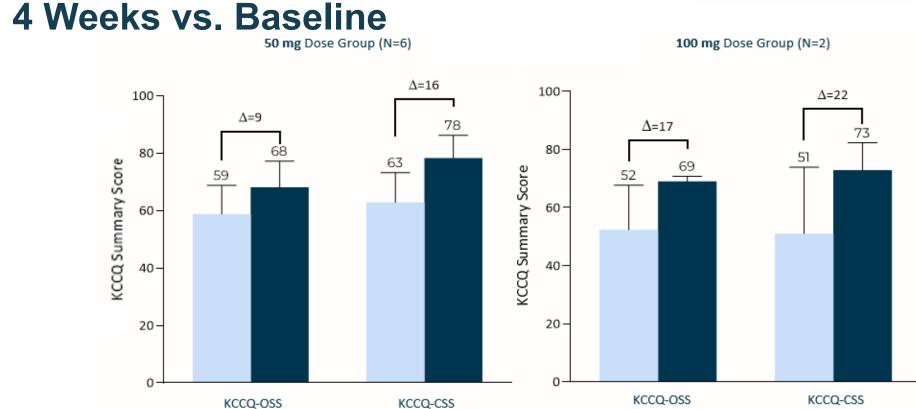
KCCQ-CSS

100mg after 4 Weeks vs. Baseline

NYHA Functional Class

 43% in the 50 mg group and 78% in the 100 mg group had ≥ 1 NYHA Class improvement at week 4

Nonobstructive HCM


 EDG-7500 treatment resulted in rapid and robust reductions in NT-proBNP in participants with nHCM

Early Diastolic Mitral Annular Velocity (e')

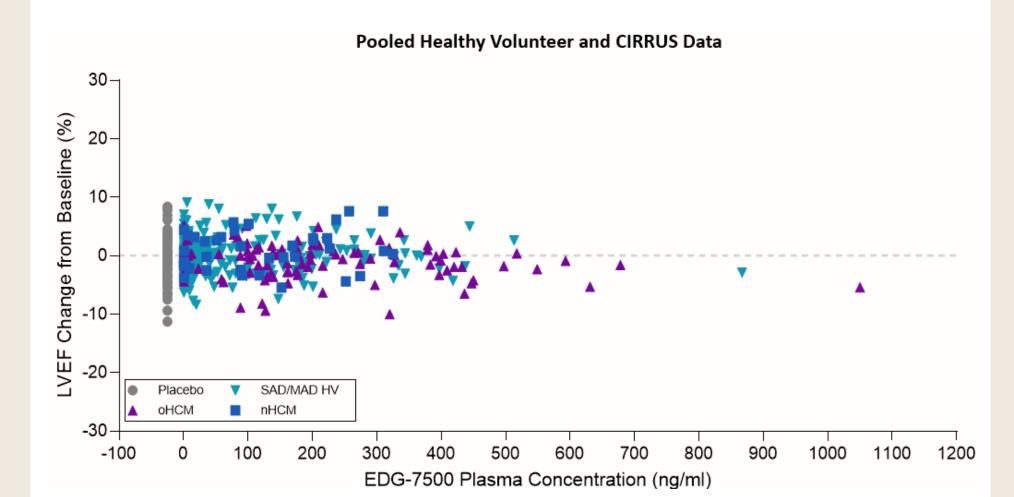
 Treatment with EDG-7500 led to mean e' changes in participants with nHCM as early as one week following initiation of dosing

KCCQ-OSS and KCCQ-CSS 4 Weeks vs. Baseline

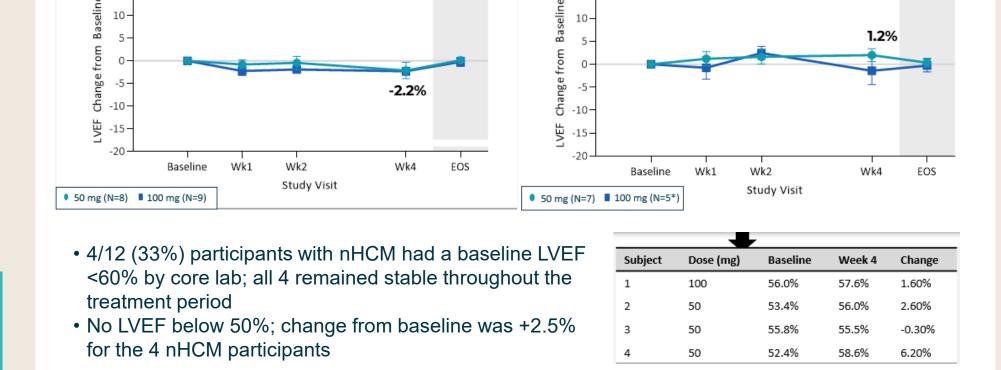

AF, atrial fibrillation; BMI, body mass index; e', early diastolic mitral annular velocity; CSS, clinical summary score; EOS, end of study; HCM, hypertrophic cardiomyopathy; ICD, implantable cardioverter-defibrillator; KCCQ, Kansas City Cardiomyopathy Questionnaire; LAVI, left atrial volume index; LV, left ventricular; LVEF, LV ejection fraction; LVOT, LV outflow tract; LVOT-G, LVOT-gradient; NS, not significant; NT-proBNP, N-terminal pro-B-type natriuretic

peptide; NYHA, New York Heart Association; oHCM, obstructive HCM; OSS,

Nonobstructive HCM


KCCQ-CSS

50mg and 100mg after 4 Weeks vs. Baseline


Safety

No Meaningful Reductions in LVEF or LVEF<50% Across a Broad Exposure Range Observed After EDG-7500 Treatment

No Meaningful Reductions in LVEF Observed After EDG-7500 Treatment

LVEF Changes in **nHCM**

oHCM and nHCM: Safety Summary

LVEF Changes in oHCM

N=29
8 (27.6%)
5 (17.2%)
4 (13.8%)
3 (10.3%)
3 (10.3%)
2 (6.9%)
2 (6.9%)
2 (6.9%)
1

- * A total of 3 oHCM participants and 1 nHCM participant had new onset symptomatic atrial fibrillation; two of these events were considered SAEs
- None of the patients who had atrial fibrillation experienced LVEF <50% at any time
- One oHCM participant discontinued treatment due to moderate dizziness

Conclusions

- EDG-7500 treatment appears to be generally well tolerated across a broad exposure range without meaningful impact on LVEF
- Treatment with EDG-7500 was shown to improve LVOT-G, NT-proBNP, e', KCCQ, and NYHA
- In the longer-term cohort of CIRRUS-HCM, intrapatient dose optimization is being explored

Dr Owens has received payments as a consultant to Alexion, Avidity, Biomarin, Bayer, Bristol Myers Squibb, Cytokinetics, Lexeo, Stealth, Tenaya, Imbria, and Edgewise Therapeutics.

We thank all patients and their families for participating in the CIRRUS-HCM trial

EDG-7500 is an investigational therapy not approved by any health authority

¹Coats CJ et al., *Eur Heart J* 2024 Nov 8;45(42)

overall summary score; pVO₂, peak oxygen consumption; SRT, septal

reduction therapy.