CIRRUS-HCM: A Multiple-Dose Phase 2 Study of Safety, Tolerability, and Effects on Hemodynamics and Functional Capacity of the Novel Cardiac Sarcomere Modulator EDG-7500 in Hypertrophic Cardiomyopathy

Anjali T Owens¹, Theodore P Abraham², Ronald Wharton³, Ankit Bhatia⁴, Mariko W Harper⁵, Christopher Dufton⁶, Daniel D Gretler⁶, Jeffrey A Silverman⁶, Marilyn M Mok⁶, Molly Madden⁶, James MacDougall⁶, Natalie Hawryluk⁶, and Marc J Semigran⁶

¹University of Pennsylvania, Philadelphia PA; ²University of California, San Francisco CA; ³Northwell Health, New Hyde Park NY; ⁴The Christ Hospital Health Network, Cincinnati OH; ⁵Virginia Mason Franciscan Health, Seattle WA; ⁶Edgewise Therapeutics, Boulder CO

Disclosures

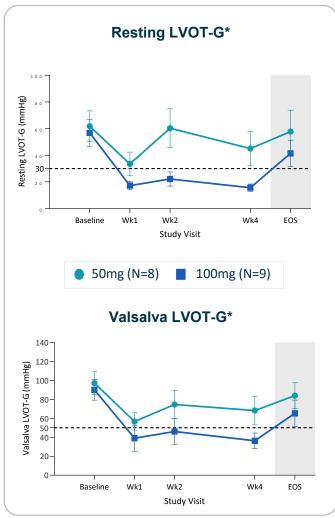
• Dr Owens has received payments as a consultant to Alexion, Avidity, Biomarin, Bayer, Bristol Myers Squibb, Cytokinetics, Lexeo, Stealth, Tenaya, Imbria, and Edgewise Therapeutics.

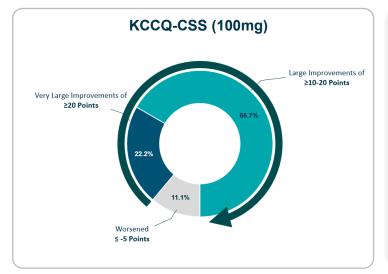
Background

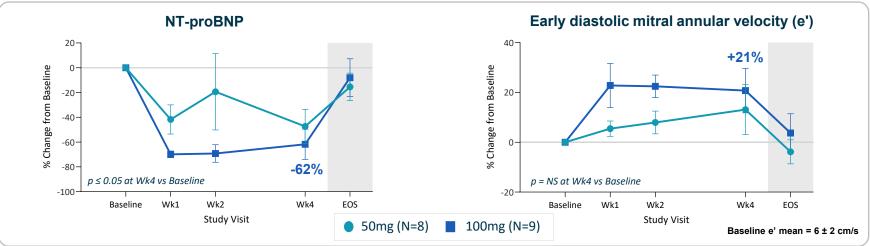
- **EDG-7500** is a novel **cardiac sarcomere modulator** designed to slow the rate of acto-myosin engagement and speed disengagement without inactivating the myosin motor head.
- In preclinical studies and the Phase 2 single-dose oHCM study, EDG-7500 demonstrated significant **reductions** in **LVOT-G** and **NT-proBNP**, along with improvements in **diastolic function**.
- Cardiac myosin inhibitors, both approved and in development, might cause systolic dysfunction and require careful LVEF monitoring through frequent echocardiographic evaluation.
- **No meaningful reductions in LVEF** have been observed across the EDG-7500 development program so far, which potentially could eliminate the need for safety echocardiograms.

Baseline Characteristics: oHCM and nHCM

Demographics			
	oHCM (n=17)	nHCM (n=12)	
Age (yrs), mean (SD)	61 (13)	54 (19)	
Female, n (%)	12 (71%)	7 (58%)	
BMI (kg/m²), mean (SD)	28 (4)	27 (4)	
Medical History			
Pathogenic sarcomere variant, n (%)	4 (24%)	4 (33%)	
History of paroxysmal AF / flutter, n (%)	1 (6%)	2 (17%)	
ICD, n (%)	2 (12%)	6 (50%)	
Prior SRT, n (%)	1 (6%)	0%	
Hypertension, n (%)	11 (65%)	2 (17%)	
Diabetes, n (%)	1 (6%)	2 (17%)	
NYHA Class			
Class I, n (%)	1 (6%)	0%	
Class II, n (%)	10 (59%)	6 (50%)	
Class III, n (%)	6 (35%)	6 (50%)	


Echocardiographic Parameters			
	oHCM (n=17)	nHCM (n=12)	
LVEF (%), mean (SD)	65 (4)	61 (6)	
LVOT-G (resting; mmHg), mean (SD)	59 (30)	9 (6)	
LVOT-G (Valsalva; mmHg), mean (SD)	93 (32)	14 (10)	
e' mean (cm/s), mean (SD)	6 (2)	7 (2)	
Maximal LV wall thickness (mm), mean (SD)	18 (2)	18 (3)	
LAVI (ml/m²), mean (SD)	37 (13)	31 (12)	
Patient-reported Outcome Measures			
KCCQ-OSS, mean (SD)	63 (16)	57 (22)	
KCCQ-CSS, mean (SD)	69 (15)	63 (23)	
Laboratory Measures			
NT-proBNP (geometric mean /median (IQR); pg/ml)	724 / 710 (381, 1074)	782 / 715 (546, 1231)	

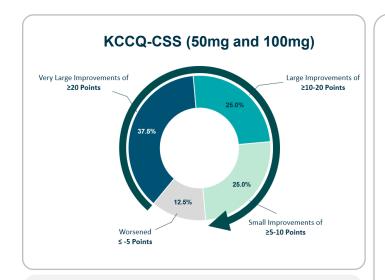

AF, atrial fibrillation; BMI, body mass index; e', early diastolic mitral annular velocity; CSS, clinical summary score; HCM, hypertrophic cardiomyopathy; ICD, implantable cardioverter-defibrillator; KCCQ, Kansas City Cardiomyopathy Questionnaire; LAVI, left atrial volume index; LV, left ventricular; LVEF, LV ejection fraction; LVOT, LV outflow tract; nHCM, nonobstructive hypertrophic cardiomyopathy; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association; oHCM, obstructive HCM; OSS, overall summary score; SRT, septal reduction therapy.


CIRRUS-HCM Part B summary: multiple-dose 4-week study in oHCM

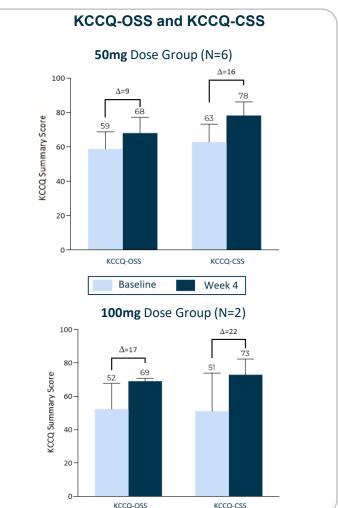
- 89% at 100mg reached resting LVOT <30mmHg and Valsalva LVOT <50mmHg
- 56% at 100mg achieved NT-proBNP <150 pg/mL
- 89% with clinical improvements in KCCQ-CSS (100mg) after 4 weeks
- **43**% at 50mg and **78**% at 100mg achieved ≥ 1 NYHA Class improvement at week 4

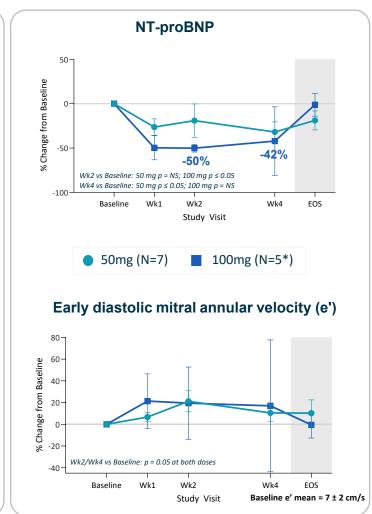
Mean ± SEM

5 participants had either resting gradients <30 mmHg or Valsalva gradients <50 mmHg on Day 1; *% reaching LVOT criteria based on N=7 and N=9 participants with Week 4 data at 50 mg and 100 mg respectively; Complete LVOT-G response defined as resting and Valsalva gradients <30 mmHg and <50 mmHg, respectively.

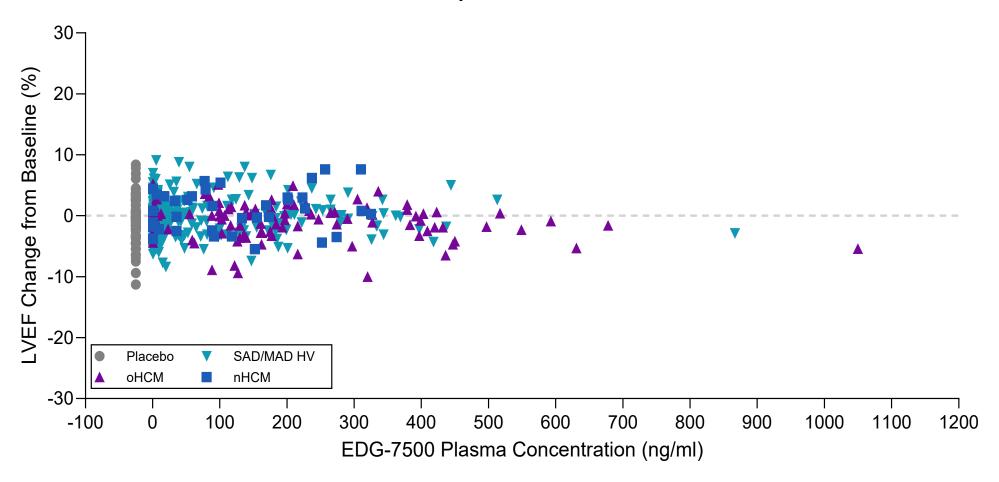


⁷ individuals were evaluated for NYHA at week 4




CIRRUS-HCM Part C summary: multiple-dose 4-week study in nHCM

- Rapid and robust reductions in NT-proBNP
- Mean e' changes in as early as one week following dosing
- 88% with clinical improvements in KCCQ-CSS after 4 weeks (50mg/100mg combined)



No Meaningful Reductions in LVEF or LVEF <50% Across a Broad Exposure Range Observed After EDG-7500 Treatment

Pooled Healthy Volunteer and CIRRUS Data

Treatment-Emergent Adverse Events (TEAE), n (%)	N=29	
Dizziness (mostly mild and transient in duration)	8 (27.6%)	
Upper respiratory tract infection	5 (17.2%)	
Atrial fibrillation*	4 (13.8%)	
Influenza like illness	3 (10.3%)	
Palpitations	3 (10.3%)	
Constipation	2 (6.9%)	
Diarrhea	2 (6.9%)	
Headache	2 (6.9%)	

Treatment emergent adverse events in >1 participant in the combined oHCM and nHCM cohorts.

- * A total of 3 oHCM participants and 1 nHCM participant had new onset symptomatic atrial fibrillation; two of these events were considered SAEs
- None of the participants who had atrial fibrillation experienced LVEF <50% at any time
- One oHCM participant discontinued treatment due to moderate dizziness

Conclusions

- EDG-7500 has the potential to emerge as an **exciting new therapeutic** option for both oHCM and nHCM
- EDG-7500 treatment appears to be **generally well tolerated** across a broad exposure range **without meaningful impact on LVEF**
- Treatment with EDG-7500 was shown to improve LVOT-G, NT-proBNP, e', KCCQ, and NYHA
- In the longer-term cohort of CIRRUS-HCM, intra-patient dose optimization is being explored

