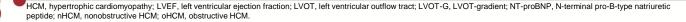
CIRRUS-HCM: A Multiple-Dose Phase 2 Study of Safety, Tolerability, and Effects on Hemodynamics and Functional Capacity of the Novel Cardiac Sarcomere Modulator EDG-7500 in Hypertrophic Cardiomyopathy

<u>Anjali T Owens</u>¹, Theodore P Abraham², Ronald Wharton³, Ankit Bhatia⁴, Mariko W Harper⁵, Christopher Dufton⁶, Daniel D Gretler⁶, Jeffrey A Silverman⁶, Marilyn M Mok⁶, Molly Madden⁶, James MacDougall⁶, Natalie Hawryluk⁶, and Marc J Semigran⁶

¹University of Pennsylvania, Philadelphia PA; ²University of California, San Francisco CA; ³Northwell Health, New Hyde Park NY; ⁴The Christ Hospital Health Network, Cincinnati OH; ⁵Virginia Mason Franciscan Health, Seattle WA; ⁶Edgewise Therapeutics, Boulder CO


Disclosures

• Dr Owens has received payments as a consultant to Alexion, Avidity, Biomarin, Bayer, Bristol Myers Squibb, Cytokinetics, Lexeo, Stealth, Tenaya, Imbria, and Edgewise Therapeutics.

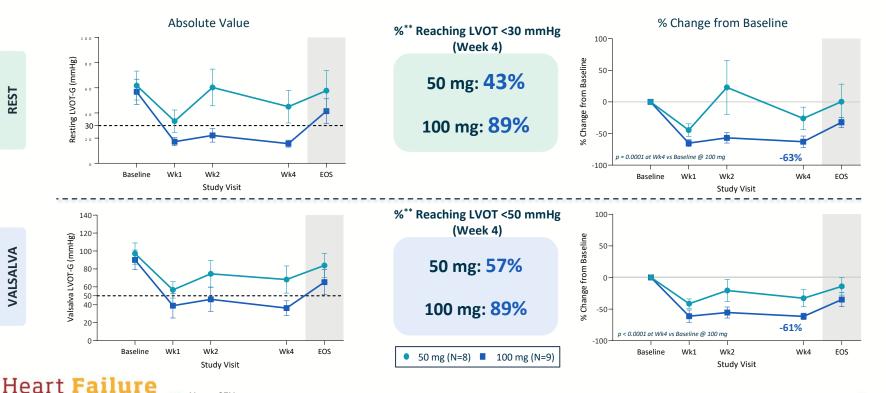
Background

- **EDG-7500** is a novel **cardiac sarcomere modulator** designed to slow the rate of actomyosin engagement and speed disengagement without inactivating the myosin motor head.
- In preclinical studies and the Phase 2 single-dose oHCM study, EDG-7500 demonstrated significant reductions in LVOT-G and NT-proBNP, along with improvements in diastolic function.
- **Cardiac myosin inhibitors**, both approved and in development, might cause systolic dysfunction and require **careful LVEF monitoring** through frequent echocardiographic evaluation.
- No meaningful reductions in LVEF have been observed across the EDG-7500 development program so far, which potentially could eliminate the need for safety echocardiograms.
 Heart Failure

Obstructive HCM: Baseline Characteristics (N=17)

Demographics		
Age (yrs), mean (SD)	61 (13)	
Female, n (%)	12 (71%)	
BMI (kg/m²), mean (SD)	28 (4)	
Medical History		
Pathogenic sarcomere variant, n (%)	4 (24%)	
History of paroxysmal AF / flutter, n (%)	1 (6%)	
ICD, n (%)	2 (12%)	
Prior SRT, n (%)	1 (6%)	
Hypertension, n (%)	11 (65%)	
Diabetes, n (%)	1 (6%)	
NYHA Class		
Class I, n (%)	1 (6%)	
Class II, n (%)	10 (59%)	
Class III, n (%)	6 (35%)	

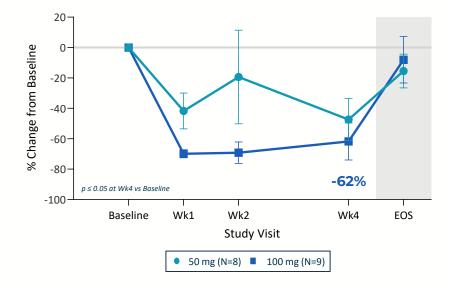
Echocardiographic Parameters		
LVEF (%), mean (SD)	65 (4)	
LVOT-G (resting; mmHg), mean (SD)	59 (30)	
LVOT-G (Valsalva; mmHg), mean (SD)	93 (32)	
e' mean (cm/s), mean (SD)	6 (2)	
Maximal LV wall thickness (mm), mean (SD)	18 (2)	
LAVI (ml/m²), mean (SD)	37 (13)	
Patient-reported Outcome Measures		
KCCQ-OSS, mean (SD)	63 (16)	
KCCQ-CSS, mean (SD)	69 (15)	
Laboratory Measures		
NT-proBNP (geometric mean /median (IQR); pg/ml)	724 / 710 (381, 1074)	



AF, atrial fibrillation; BMI, body mass index; e['], early diastolic mitral annular velocity; CSS, clinical symptom score; HCM, hypertrophic cardiomyopathy; ICD, implantable cardioverterdefibrillator; KCCQ, Kansas City Cardiomyopathy Questionnaire; LAVI, left atrial volume index; LV, left ventricular; LVEF, LV ejection fraction; LVOT, LV outflow tract; NT-proBNP, Nterminal pro-B-type natriuretic peptide; NYHA, New York Heart Association; oHCM, obstructive HCM; OSS, overall summary score; SRT, septal reduction therapy.

oHCM: LVOT-G at Rest & Post Valsalva

Mean ± SEM

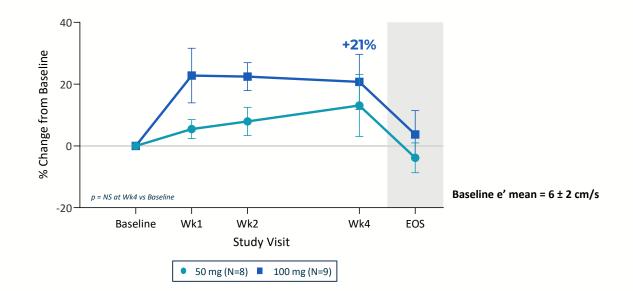

World Congress on

Acute Heart Failure

* 5 participants had either resting gradients <30 mmHg or Valsalva gradients <50 mmHg on Day 1; ** % reaching LVOT criteria based on N=7 and N=9 participants with Week 4 data at 50 mg and 100 mg respectively; Complete LVOT-G response defined as resting and Valsalva gradients <30 mmHg and <50 mmHg, respectively. EOS, end of study; LVOT, left ventricular outflow tract.

oHCM: NT-proBNP

- 5/9 (56%) at 100 mg achieved NT-proBNP <150 pg/mL
- Improvements in NT-proBNP have shown a strong correlation to improvements in pVO₂¹



¹Coats CJ et al., Eur Heart J 2024 Nov 8;45(42)

EOS, end of study; NT-proBNP, N-terminal pro-B-type natriuretic peptide; oHCM, obstructive hypertrophic cardiomyopathy; pVO2, peak oxygen consumption.

oHCM: Early Diastolic Mitral Annular Velocity (e')

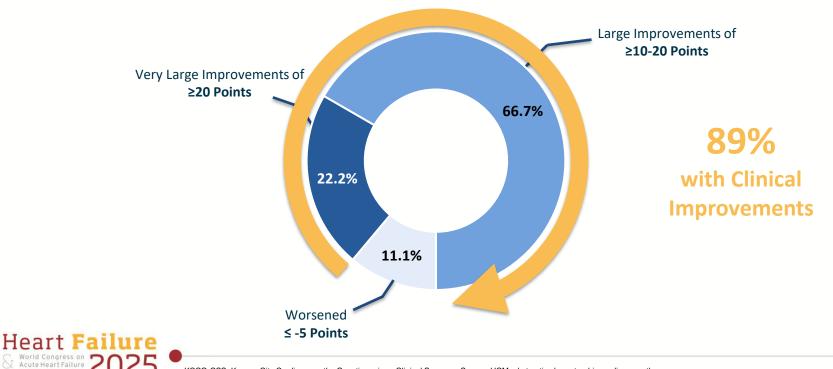
• Rapid dose-responsive improvements in mean e' observed as early as 1 week after initiation of treatment with EDG-7500

oHCM: KCCQ-OSS and KCCQ-CSS

Acute Heart Failure

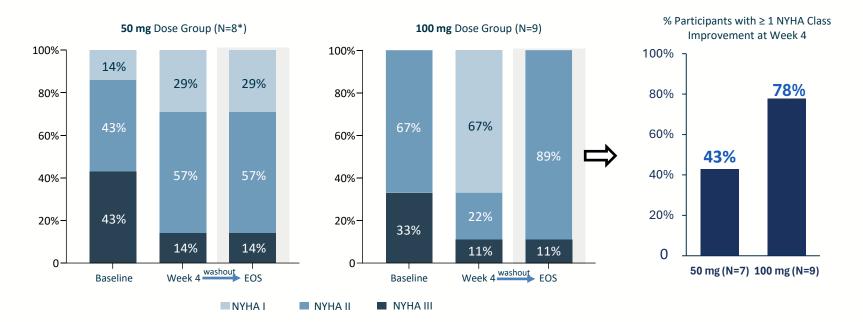
50 mg Dose Group (N=8*) 100 mg Dose Group (N=9) Baseline Week 4 $\Delta = 20^{\dagger}$ 100- $\Delta = 23^{\dagger}$ **Λ=4**** ∆=3 ^{**} 100-88 83 75 70 80 71 68 80-KCCQ Summary Score 68 KCCQ Summary Score 60 60-60 40-40-20-20-0 0 KCCQ-OSS KCCQ-CSS KCCQ-OSS KCCQ-CSS 24 points Median KCCQ Improvement: 7 points 2 points 18 points **p = NS at Wk4 vs Baseline *tp* < 0.005 at Wk4 vs Baseline Heart Failure World Congress on

KCCQ Changes with EDG-7500 Treatment in oHCM after 4 Weeks vs. Baseline


Mean ± SEM * Represents 7 individuals who were evaluated for KCCQ at week 4

CSS, clinical summary score; KCCQ, Kansas City Cardiomyopathy Questionnaire; NS, not significant; oHCM, obstructive hypertrophic cardiomyopathy; OSS, overall summary score.

KCCQ-CSS Changes with EDG-7500 Treatment in oHCM (100 mg) after 4 Weeks vs. Baseline



KCCQ-CSS, Kansas City Cardiomyopathy Questionnaire - Clinical Summary Score; oHCM, obstructive hypertrophic cardiomyopathy.

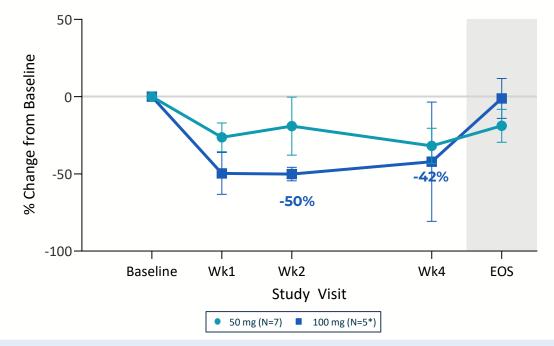
oHCM: NYHA Functional Class

NYHA Functional Class Improvements with EDG-7500 Treatment in oHCM at 4 Weeks

* Represents 7 individuals who were evaluated for NYHA at week 4 EOS, end of study; NYHA, New York Heart Association.

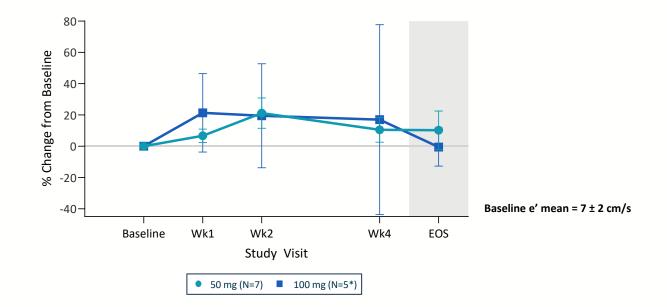
Nonobstructive HCM: Baseline Characteristics (N=12)

Demographics		
Age (yrs), mean (SD)	54 (19)	
Female, n (%)	7 (58%)	
BMI (kg/m²), mean (SD)	27 (4)	
Medical History		
Pathogenic sarcomere variant, n (%)	4 (33%)	
History of paroxysmal AF / flutter, n (%)	2 (17%)	
ICD, n (%)	6 (50%)	
Prior SRT, n (%)	0%	
Hypertension, n (%)	2 (17%)	
Diabetes, n (%)	2 (17%)	
NYHA Class		
Class I, n (%)	0%	
Class II, n (%)	6 (50%)	
Class III, n (%)	6 (50%)	


Echocardiographic Parameters		
LVEF (%), mean (SD)	61 (6)	
LVOT-G (resting; mmHg), mean (SD)	9 (6)	
LVOT-G (Valsalva; mmHg), mean (SD)	14 (10)	
e' mean (cm/s), mean (SD)	7 (2)	
Maximal LV wall thickness (mm), mean (SD)	18 (3)	
LAVI (ml/m²), mean (SD)	31 (12)	
Patient-reported Outcome Measures		
KCCQ-OSS, mean (SD)	57 (22)	
KCCQ-CSS, mean (SD)	63 (23)	
Laboratory Measures		
NT-proBNP (geometric mean/median (IQR); pg/ml)	782 / 715 (546, 1231)	

AF, atrial fibrillation; BMI, body mass index; e⁺, early diastolic mitral annular velocity; CSS, clinical symptom score; HCM, hypertrophic cardiomyopathy; ICD, implantable cardioverterdefibrillator; KCCQ, Kansas City Cardiomyopathy Questionnaire; LAVI, left atrial volume index; LV, left ventricular; LVEF, LV ejection fraction; LVOT, LV outflow tract; nHCM, nonobstructive HCM; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association; OSS, overall summary score; SRT, septal reduction therapy.

nHCM: NT-proBNP

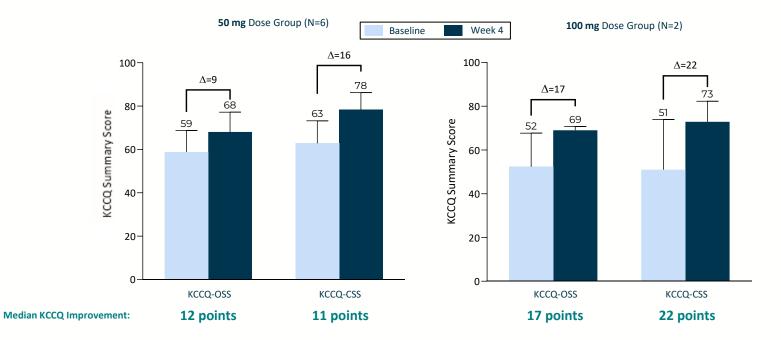

EDG-7500 treatment resulted in rapid and robust reductions in NT-proBNP in participants with nHCM

Wk2 vs Baseline: 50 mg p = NS; 100 mg $p \le 0.05$ *Wk4 vs Baseline:* 50 mg $p \le 0.05$; 100 mg p = NS

nHCM: Early Diastolic Mitral Annular Velocity (e')

Treatment with EDG-7500 led to mean e' changes in participants with nHCM as early as one week following initiation of dosing

Wk2/Wk4 vs Baseline: p = 0.05 at both doses


Mean ± SD for baseline value: Mean ± SEM for % change from baseline

e', early diastolic mitral annular velocity; EOS, end of study; nHCM, nonobstructive hypertrophic cardiomyopathy

nHCM: KCCQ-OSS and KCCQ-CSS

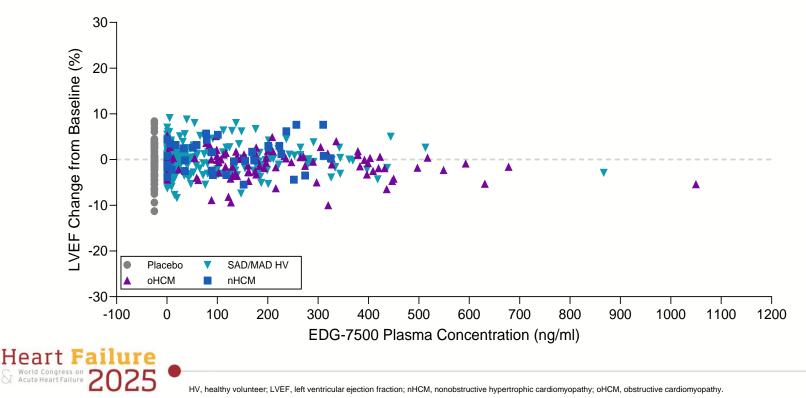
KCCQ Changes with EDG-7500 Treatment in nHCM after 4 Weeks vs. Baseline

Wk4 vs Baseline: p = NS at both doses across both KCCQ measures

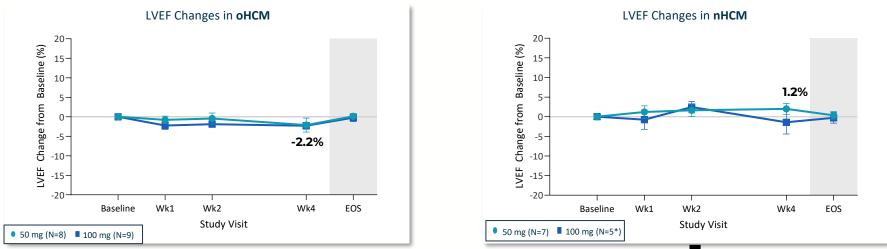
Mean ± SEM

CSS, clinical summary score; KCCQ, Kansas City Cardiomyopathy Questionnaire; nHCM, nonobstructive hypertrophic cardiomyopathy; NS, not significant; OSS, overall summary score.

KCCQ-CSS Changes with EDG-7500 Treatment in nHCM (50 mg and 100 mg) after 4 Weeks vs. Baseline



KCCQ-CSS, Kansas City Cardiomyopathy Questionnaire - Clinical Summary Score; nHCM, nonobstructive hypertrophic cardiomyopathy.


No Meaningful Reductions in LVEF or LVEF <50% Across a Broad Exposure Range Observed After EDG-7500 Treatment

Pooled Healthy Volunteer and CIRRUS Data

No Meaningful Reductions in LVEF Observed After EDG-7500 Treatment

Subject

1

2

3

4

Dose (mg)

100

50

50

50

Baseline

56.0%

53.4%

55.8%

52.4%

Week 4

57.6%

56.0%

55.5%

58.6%

Change

1.60%

2.60%

-0.30%

6.20%

• 4/12 (33%) participants with nHCM had a baseline LVEF <60% by core lab; all 4 remained
stable throughout the treatment period

• No LVEF below 50%; change from baseline was +2.5% for the 4 nHCM participants

Heart Failure

oHCM and nHCM: Safety Summary

Treatment-Emergent Adverse Events (TEAE), n (%)	N=29
Dizziness (mostly mild and transient in duration)	8 (27.6%)
Upper respiratory tract infection	5 (17.2%)
Atrial fibrillation*	4 (13.8%)
Influenza like illness	3 (10.3%)
Palpitations	3 (10.3%)
Constipation	2 (6.9%)
Diarrhea	2 (6.9%)
Headache	2 (6.9%)

Treatment emergent adverse events in >1 participant in the combined oHCM and nHCM cohorts.

* A total of 3 oHCM participants and 1 nHCM participant had new onset symptomatic atrial fibrillation; two of these events were considered SAEs
oHCM

Pt #1 (66, F, 50 mg): Hx of hypertension, diabetes, obstructive lung disease. Echo: significant mitral annular calcification with mild/moderate mitral stenosis Pt #2 (67, F, 100 mg): Hx of hypertension, diabetes, and obstructive lung disease

Pt #3 (54, M, 100 mg): Hx of hypertension, obstructive lung disease, and disopyramide discontinuation three weeks before the first dose **nHCM**

Pt #1 (61, F, 100 mg): Hx of hypertension, LAVI: 50.2 ml/m²

- None of the patients who had atrial fibrillation experienced LVEF <50% at any time
- One oHCM participant discontinued treatment due to moderate dizziness

- EDG-7500 has the potential to emerge as an **exciting new therapeutic** option for both oHCM and nHCM
- EDG-7500 treatment appears to be **generally well tolerated** across a broad exposure range **without meaningful impact on LVEF**
- Treatment with EDG-7500 was shown to improve LVOT-G, NT-proBNP, e', KCCQ, and NYHA
- Intra-patient dose titration will be explored soon in CIRRUS-HCM for dose optimization

Acknowledgments

• We thank all patients and their families for participating in the CIRRUS-HCM trial

